这是一本专门介绍卡洛斯·塞戈维亚(Carlos Segovia)的受邀章节集,这本统一而独立的书考察了真实与和谐分析的最新发展。这项工作从塞戈维亚的数学生活、他的原始想法及其演变的时间顺序描述开始,这可能是许多从事调和分析、泛函分析和偏微分方程领域工作的数学家的灵感来源。
除了这一贡献,这部作品还包括两种不同类型的章节:关于卡洛斯最喜欢的主题的调查,以及与塞戈维亚关系密切的学生和同事撰写的PDE作品,他们的职业生涯在某种程度上受到了他的影响。
涵盖的具体主题包括
*向量值奇异积分方程
*与Hermite展开式有关的调和分析
*多孔介质中的气体流动
*KPI方程的全局适定性
*Monge–Ampère型方程及其应用
*齐型空间
*Hardy和Lipschitz空间
*单边运算符
这本书将对研究生以及对实分析和调和分析相关领域的新数学发展感兴趣的纯数学家和应用数学家有用。
贡献者:H.艾马尔、A.博纳米、O.布拉斯科、L.A.卡法雷利、S.夏尼洛、J.费托、L.福扎尼、C.E.古铁雷斯、E.哈博雷、A.L.卡拉汗、C.E.凯尼格、R.A.马西亚斯、J.J.曼弗雷迪、F.J.马丁雷耶斯、P.奥尔特加、R.斯科托、A.德拉托雷、J.L.托雷亚
Recent Developments in Real and Harmonic Analysis: In Honor of Carlos Segovia
A collection of invited chapters dedicated to Carlos Segovia, this unified and self-contained volume examines recent developments in real and harmonic analysis. The work begins with a chronological description of Segovia’s mathematical life, his original ideas and their evolution, which may be a source of inspiration for many mathematicians working in the fields of harmonic analysis, functional analysis, and partial differential equations.
Apart from this contribution, two different types of chapters are featured in the work: surveys dealing with Carlos’ favorite topics, and PDE works written by students and colleagues close to Segovia whose careers were in some way influenced by him.
Specific topics covered include
* Vector-valued singular integral equations
* Harmonic analysis related to Hermite expansions
* Gas flow in porous media
* Global well-posedness of the KPI Equation
* Monge–Ampère type equations and applications
* Spaces of homogeneous type
* Hardy and Lipschitz spaces
* One-sided operators
This book will be useful to graduate students as well as pure and applied mathematicians interested in new mathematical developments in areas related to real and harmonic analysis.
Contributors: H. Aimar, A. Bonami, O. Blasco, L.A. Caffarelli, S. Chanillo, J. Feuto, L. Forzani, C.E. Gutíerrez, E. Harboure, A.L. Karakhanyan, C.E. Kenig, R.A. Macías, J.J. Manfredi, F.J. Martín-Reyes, P. Ortega, R. Scotto, A. de la Torre, J.L. Torrea
OR