这本书对连续介质力学的潜力进行了广泛的概述,以描述现实世界问题中广泛的宏观现象。在作者上一本书《使用Mathematica®的连续介质力学》中介绍的基础上,这项新工作探索了有趣的连续介质力学模型,重点是探索其在广泛领域中应用的灵活性。
为了展示连续介质力学在描述真实现象的实验行为方面的能力,我们选择了一些具体的主题,包括
*非线性弹性力学的各个方面,包括平衡方程及其变分公式、非线性本构方程、Van Buren和Stoppelli的存在性和唯一性定理,以及Signorini方法,以及活荷载和加速度波的一些扩展
*与导演的连续剧
*具有非物质运动界面的连续体模型
*混合物理论:二元混合物中的吉布斯规则
*电场或磁场与物质的相互作用
*微磁学
*狭义相对论中的连续体和物质与电磁场的相对论相互作用
包括附录,以提供有关曲面几何、一阶偏微分方程和模型弱解等主题的背景信息。Mathematica®笔记本也可以下载athttp://www.birkhauser.com/978-0-8176-4869-5.
该书面向高级研究生、应用数学家、数学物理学家和工程师,将成为研究生课程中优秀的自学参考书或补充教材,重点关注连续介质力学的高级主题和研究趋势。
Continuum Mechanics: Advanced Topics and Research Trends
This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors’ previous book, Continuum Mechanics using Mathematica®, this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.
Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include
* various aspects of nonlinear elasticity, including equilibrium equations and their variational formulation, nonlinear constitutive equations, existence and uniqueness theorems of Van Buren and Stoppelli, and Signorini’s method with some extensions to live loads and acceleration waves
* continua with directors
* a model of a continuum with a nonmaterial moving interface
* mixture theory: The Gibbs Rule in a binary mixture
* interaction between electric or magnetic fields with matter
* micromagnetism
* continua in special relativity and relativistic interactions between matter and electromagnetic fields
Appendices are included to provide background information on topics such as surface geometry, first-order PDEs, and weak solutions to models. Mathematica® notebooks also accompanying the text are available for download athttp://www.birkhauser.com/978-0-8176-4869-5.
Aimed at advanced graduate students, applied mathematicians, mathematical physicists, and engineers, the work will be an excellent self-study reference or supplementary textbook in graduate-level courses focusing on advanced topics and research trends in continuum mechanics.
OR